It’s been 40 years since Mr. McGuire pulled Benjamin Braddock withdrawal apart from his degree and said: “I just want to say one word to you. … Just one word are you listening? Plastics …. There is a great future in plastics. ”
The future is still in plastics, but today Mr. McGuire probably whisper, “bioplastics”. Based on increases in the price of crude oil, from which most of the plastics are derived, consumers and interest in almost anything “green”, the timing is ideal for an increase in this next generation of plastics. The European trade group bioplastics planned annual capacity of more than three times the 1.5 million tonnes by 2011. BCC Research estimates the global market for biodegradable polymers to grow at a compound average growth rate of over 17 percent through 2012. Even so, bioplastics will include a small niche of the global market of plastic, which is expected to reach 500 billion pounds globally by 2010.
The case of bioplastics
According to the U.S. Environmental Protection Agency, only 6 percent of plastic made in the United States was recycled in 2005. (This compared with a reduction of 50 percent for the rate of recycling paper, 37 percent for metals and 22 percent for glass.) Plastic debuts in landfill is a life measured in thousands of years . Because most bioplastics are produced from agricultural-based renewable resources, under conditions that are biodegradable and compostable. The environment-friendly aspect of bio-based plastics appeal to companies seeking non-toxic containers which do not leach questionable chemicals, and that harmlessly back to nature after having been eliminated.
In addition, U.S. consumers get more than 100 billion polythene carrier bags each year, but only 1.2 percent are recycled. Reusablebags.com estimates up to 1 trillion plastic bags are delivered to consumers worldwide. It may be cheaper for retailers to hand a card or a bag of polyethylene, but the environmental cost of bioplastic bags is less in terms of disposal. Consumers like the lightweight plastic bags and tend to find more uses for them before throwing them away. Very few people bring them back to the warehouse, which explains the recycling rate miniscule. Substitution with bags of polyethylene bioplastic would be environmentally safe.
Void in San Francisco-and even in China
In San Francisco-based oil exchanges are banned from supermarkets and drug stores. Other communities both in the United States and internationally have taken note and are both to initiate outright fees or bans petroleum-based plastic bags. In January, China’s State Council banned the production of plastic bags, and beginning June 1, shops, supermarkets and retail outlets on a national scale are excluded from their transmission.
In Ireland, government officials approved a tax on plastic bags in 2002. When customers Getting hit with 33-cent fee for each and every plastic shopping bag, use switched within a matter of weeks to reusable cloth bags or rucksacks. Behavior consumer was changed and carrying a plastic bag of shopping was similar to wear fur or smoking in a crowded room, in a matter of a few years became socially unacceptable behaviour.
California has also banned called phthalates, chemicals, found in soft plastic, toys and products for children. The search for bisphenol-A (BPA), used to make polycarbonates, shows that the compound mimics the human hormone estrogen and was found to stimulate certain types of cancer, cause genetic damage, and leach the plastic bottles into food and drink .
Safer alternatives are beginning to appear. Bioplastica are displayed not only in food packaging, but in the automotive industry, medical devices, such as hardware for computer and electronics industry, on-the-go single (glasses, plates, cutlery), and production of toys.
Engineering bioplastics for expanded uses
Typically thought of as coming from corn, bioplastics can and are made from other plant-based raw materials such as potatoes, sugar beets, sugar cane, cassava, corn, tapioca, and oils from soybeans. The companies have produced hybrid bioplastics products incorporating a mixture of starch plant with conventional polymers that help manufacturers reduce their dependence on nonrenewable resources and add features such as resistance to heat or duration for their products, but not can claim to be completely biodegradable or compostable.
As technology continues to evolve, bioplastics will be engineered with resistance to heat and the strength needed for wider use. For example, Metabolix, a company of Massachusetts, has developed a biodegradable polymer called Mirel made by bacteria, corn, and the air that is able to withstand boiling water.
Innovative Enterprises will watch their raw materials, have their finger on the pulse of what is consumer demand, and you can assess the health risks of conventional plastics. They should also keep an eye on new technologies or raw materials materials that will help solve some of the first challenges associated with bioplastics as they move from niche sector for the mainstream. Cereplast take for example. The company now has 15 types of resins in its line Compostables ™, including a heat-resistant product CP-TH-6000 that can withstand heat up to 155p F. It also has a hybrid of resin which is resistant to heat up to 250p. To meet the demands of bioplastics Cereplast has announced it is building a new plant in Indiana. It will have half a billion pounds-when fully operational capability in 2010.
Completing the cycle Bio –
In the future, bioplastics products could be recycled into biodiesel. Researchers at the Polytechnic University of New York have developed a fuel-latent plastic that is tougher and more durable the level of polyethylene. After use, the product can be placed in a simple converter where enzymes break it down into biodiesel, suitable for home heating fuel. The Defense Advanced Research Projects Agency (DARPA) awarded the university researchers $ 2.34 million for advance technology and the transfer to industry. The military has shown interest in their discovery for use on the battlefield where it could generate its own fuel and waste disposal at the same time.
Any company planning to jump on bioplastics at a production of resin or conversion of products to a plant-based alternative needs to stay abreast of what is happening on stage biofuels, too. Bioplastica could be the darlings of bio-based products industry at this moment, but will compete for resources with biofuels producers of limited resources. What could cause an increase in prices of raw materials, which could adversely affect the economy of both areas. Moreover, while bioplastics are perceived as environmentally friendly, environmental groups are raising questions about the food crops diverting resources for industrial uses. Some materials, such as corn, are more heavily dependent on agro-chemicals and water and other environmentalists are concerned about excessive or irresponsible could use our impact on the environment. They also worry that millions of acres of rainforest and savannah will be lost to make way for organic crops. This complicated equation environment could drastically alter the dynamics.
1 comment:
Nice blog!
To know more on bioplastics:
http://biopol.free.fr/
Biopol
:-)
Post a Comment